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Abstract
Background: A well designed randomized clinical trial rates as the highest level of evidence for a
particular intervention's efficacy. Randomization, a fundamental feature of clinical trials design, is a
process invoking the use of probability to assign treatment interventions to patients. In general,
randomization techniques pursue the goal of providing objectivity to the assignment of treatments,
while at the same time balancing for treatment assignment totals and covariate distributions.
Numerous randomization techniques, each with varying properties of randomness and balance, are
suggested in the statistical literature. This paper reviews common randomization techniques often
used in substance abuse research and an application from a National Institute on Drug Abuse
(NIDA)-funded clinical trial in substance abuse is used to illustrate several choices an investigator
faces when designing a clinical trial.

Results: Comparisons and contrasts of randomization schemes are provided with respect to
deterministic and balancing properties. Specifically, Monte Carlo simulation is used to explore the
balancing nature of randomization techniques for moderately sized clinical trials. Results
demonstrate large treatment imbalance for complete randomization with less imbalance for the urn
or adaptive scheme. The urn and adaptive randomization methods display smaller treatment
imbalance as demonstrated by the low variability of treatment allocation imbalance. For all
randomization schemes, covariate imbalance between treatment arms was small with little
variation between adaptive schemes, stratified schemes and unstratified schemes given that sample
sizes were moderate to large.

Conclusion: We develop this paper with the goal of reminding substance abuse researchers of
the broad array of randomization options available for clinical trial designs. There may be too quick
a tendency for substance abuse researchers to implement the fashionable urn randomization
schemes and other highly adaptive designs. In many instances, simple or blocked randomization
with stratification on a major covariate or two will accomplish the same objectives as an urn or
adaptive design, and it can do so with more simply implemented schedules and without the dangers
of overmatching. Furthermore, the proper analysis, fully accounting for the stratified design, can be
conducted.
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Background
Introduction
Emerging in the 1980's, evidence-based medicine is
quickly becoming the standard for classification of health
care outcome research [1]. The classification relies on a
hierarchy of evidence for efficacy where randomized clini-
cal trials rate as the highest level of evidence for a particu-
lar intervention's efficacy [2]. Specifically, randomization
provides the basis for the unbiased comparison of treat-
ment effect and provides validity for tests of statistical sig-
nificance [3]. Therefore, the selection of appropriate
randomization techniques for a clinical trial is a funda-
mental feature of the hierarchy by which a clinical trial is
judged for evidence of efficacy.

Multiple randomizations schemes have been suggested
for use in the statistical literature. Given the many
schemes provided in the literature, a daunting task for the
substance abuse researcher is to differentiate between
schemes in order to choose the most optimal randomiza-
tion scheme for a particular clinical trial. A goal of this
paper is to review and elaborate on the properties associ-
ated with several randomization schemes commonly con-
sidered in designing substance abuse clinical trials. We
also wish to present distinguishing features of these rand-
omization schemes in order to aid the substance abuse
researcher in the selection of an appropriate randomiza-
tion scheme.

Simplistically, randomization schemes can be differenti-
ated as either restricted or unrestricted. Whereas unre-
stricted schemes have no constraints imposed on the
random allocation of treatments, restricted schemes
impose "balancing" restrictions on the probability of
treatment allocation, e.g. equal numbers of patients per
treatment group. Balance restrictions generally consist of
two types of restrictions, those that impose balance on
treatment assignment throughout the length of the trial in
order to achieve equal numbers of subjects within each
treatment assignation, and those that impose covariate
balance between treatment groups, e.g. an equal distribu-
tion of males and females across treatment groups.

A variety of randomization schemes have been described
in the statistical literature; however, common schemes
utilized in the substance abuse literature are: complete, sim-
ple, permuted block, urn and covariate adaptive randomiza-
tion. Complete randomization, unlike restricted forms of
randomization, does not impose balance restrictions of
the total number of participants assigned to each treat-
ment. In contrast, the simple, permuted block, the urn and
the covariate adaptive randomization are examples of
restricted designs, which impose balance restriction on
the probability of treatment allocation throughout the
length of a trial. Urn randomization in contrast to simple

or permuted block randomization is dynamic; the probabil-
ity of treatment assignment changes dependent on the
degree of treatment imbalance throughout the course of
the trial. The simple, permuted block and urn randomization
schemes may be implemented with a further restriction,
namely, stratification, which imposes covariate balance
restriction between treatment groups. Covariate adaptive
randomization seeks to improve balance in both the final
number of subjects assigned to treatment and also the
covariate distribution between treatment arms. While
stratification requires parsimony in the selection of stratifi-
cation factors, covariate adaptive randomization utilizes all
covariates known a priori to affect treatment to achieve
distributional balance.

Recently, complex schemes such as urn or adaptive forms
of randomization have been identified as more modern
methods of randomization [4,5]. Whereas these schemes
do have the advantage of ensuring balance, it should be
reiterated that these schemes might be best used in clinical
trials of small sample size (n < 200) where major imbal-
ance could occur with higher probability [3]. However,
with moderate to large trials where imbalances have less
probability of occurrence, a simple and easily imple-
mented scheme may be more suitable. Furthermore, selec-
tion of a randomization scheme in favor of simplicity (e.g.
fewer restrictions) is warranted due to restricted methods
of randomization requiring more complex methods of
analysis.

Although restricted randomization schemes are used in a
variety of clinical settings at the design stage of a study, the
restrictions are often ignored at the analysis stage of the
study. Given that assumptions of parametric models are
met, randomization restrictions may be ignored in the
analysis and the population model may be used as a
method of inference. However, assumptions of popula-
tion models are not always met and the source of hetero-
geneity in the data may be hard to determine. Often
randomization restrictions are not considered or incorpo-
rated into the statistical analysis plan, especially for the
most complex schemes such as urn or covariate adaptive
randomization where the effects of ignoring the randomi-
zation in the analysis are difficult to assess [3]. The statis-
tical literature would argue that the analysis of
randomized clinical trials should consider the restrictions
imposed by the type of randomization scheme designated
at the design stage of the study [3,6-11]. The design and
analysis of a clinical trial are not separate entities; rather
the analysis is an extension of the design of a clinical trial.

In the sequel, several randomization schemes are both
computationally and methodologically detailed. Compu-
tations for the randomization techniques are denoted in
the Appendices. Comparisons and contrasts of randomi-
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zation schemes are provided with respect to deterministic
and balancing properties. Also, a particular application in
substance abuse research is used to illustrate the balancing
properties of several randomization schemes. Finally, we
will discuss the impact on analysis that balance restric-
tions entail in order to aid the substance abuse researcher
in developing a statistically sound design and analysis for
a randomized clinical trial.

We develop this paper with the goal of reminding sub-
stance abuse researchers of the broad array of randomiza-
tion options available for clinical trial designs. There may
be too quick a tendency for substance abuse researchers to
implement the fashionable urn randomization schemes
and other highly adaptive designs. In many instances,
simple randomization with stratification on a major cov-
ariate or two will accomplish the same objectives as an
urn design, and it can do so with more simply imple-
mented schedules and without the dangers of overmatch-
ing. Furthermore, the proper analysis, fully accounting for
the stratified design, can be conducted. A fundamental
message is that simplistic, stratified randomization
designs are an efficient class of designs for modest size tri-
als.

Randomization techniques
In this section we outline several key factors in choosing
from a variety of randomization techniques for a sub-
stance abuse trial. These include techniques used for both
treatment balance (simple, blocked, and urn) and covari-
ate balance (stratification and minimization) within treat-
ments. It should be noted that several of the techniques
might be used in combination to obtain both total treat-
ment balance and covariate balance across treatments. For
example, stratification may be used with simple, blocked
or urn randomization. Covariate adaptive randomisation;
by itself, is a randomization technique that achieves both
total treatment balance and covariate balance.

Stratification
In order to achieve balanced treatment distributions
within a prognostic factor, subjects may be stratified into
groups, and then randomized to treatment within these
groups. For example, in clinical trials of cocaine depend-
ence gender is thought to affect outcome independently of
treatment; therefore, gender may be used as a stratifying
factor. Specifically, a randomization schedule for males,
and a separate one for females, are prepared and used to
ensure treatment balance exists for each gender stratum.
Hence, within each gender, the desired treatment balance
is maintained.

More generally, stratification is a technique which parti-
tions patients into mutually exclusive subsets defined by
initial covariates thought to influence response and this

stratification is utilized to reduce accidental bias [10].
Accidental bias is defined as bias that occurs when nui-
sance factors that may be known or unknown to the
experimenter systematically affect the experimental units
[12]. Therefore, stratification is a method used to achieve
distributional balance of covariates between treatment
groups (or balanced treatment assignments within each
level of a stratum) that are expected a priori to influence
outcome.

The purpose of stratified randomization is to provide
increased confidence that compared groups are similar
with respect to known prognostic factors; therefore, differ-
ences in endpoints may be attributed to treatment [13] or,
of course, chance. Potential advantages of stratification
include reduction of Type I error, reduction of Type II
error, and increased estimation efficiency [13-15].

Type I error, we know, is defined as declaring a difference
in outcomes between treatment groups when in fact no
difference exists. In trials with up to 400 patients, statisti-
cal studies demonstrate that stratification helped in reduc-
ing the probability of type I error [13,14]

Another advantage of stratification includes increases in
power of statistical tests. Power, we know, is defined as the
ability to detect a difference in treatment groups when a
difference exists. In statistical studies of 100 subjects,
power increases of up to 12% have been demonstrated
when both stratified randomization with adjusted analy-
sis were utilized [13,15].

Although stratification has many advantageous proper-
ties, stratification variables and levels within each stratum
must be limited to represent only the most important var-
iables and levels. Use of a minimal number of factors in
creating the stratification simplifies the randomization
and trial administration [13]. Over-stratification can lead
to imbalances in overall treatment allocations because
large numbers of strata can produce small patient num-
bers within strata. For example, imbalances in prognostic
variables may occur between treatment groups in per-
muted block designs (defined in the next section) as a
result of incomplete block filling. As long as the number
of strata for a particular trial is small, there is no disadvan-
tage for stratification; however, over-stratification should
be avoided.

In summary we would like the distribution of prognostic
factors and confounders to be equalized between treat-
ment arms in order to minimize treatment estimation bias
caused by any imbalance. Stratification is a common way
of neutralizing such potential covariate imbalance. It
attempts to balance treatment groups within the variable
levels or strata of each prognostic factor. In order to reduce
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problems associated with a large selection of strata, only
those prognostic factors assumed to have the most power-
ful effect on outcome are utilized as stratification factors

Complete & simple randomization
Randomization with no restrictions imposed on the
nature of the allocation sequence with the exception of
pre-specification of the total sample size is referred to as
simple randomization [3]. As an example, simple rand-
omization occurs when the total sample size is exactly pre-
specified whereby a randomly chosen subset of n/2 out of
n subjects is allocated to treatment 1 and the remaining n/
2 subjects are allocated to treatment 2.

Complete randomization is the only scheme without
restrictions; that is, treatment assignments are unbiased or
random. Essentially with two treatments, each successive
patient has a 1/2 probability of receiving treatment 1, and
a 1/2 probability of being assigned to treatment 2. This is
so irrespective any treatment balances or imbalances up to
that point in the trial. Therefore, an important property of
complete randomization is the minimization of the deter-
minism of the treatment selection process.

However, given there are no restrictions on the number of
patients assigned to each treatment, large imbalances may
occur. For example, if treatment 1 or treatment 2 is to be
assigned to each of 10 patients, with complete randomi-
zation it is possible that any from 0 to 10 of the patients
will be assigned treatment 1. For this example with a total
of 10 subjects, the probability of perfect balance (5 sub-
jects assigned to treatment one and 5 subjects assigned to
treatment 2) is only .2461. That is, imbalance will occur
75% of the time by chance alone. Therefore, a major prob-
lem of complete randomization is the non-zero probabil-
ity of imbalance in treatment assignation, in addition to
the smaller, but still non-zero, probability of major imbal-
ance. If we define major imbalance as greater than a 20%
difference in treatment assignment, then the probability
of major imbalance given 10 subjects is .0216.

As noted, a property of complete randomization is the
minimization of selection bias due to the equal probabil-
ity of correct guess for each sequential treatment assign-
ment. Since complete randomization assigns treatment
with equal probability, investigators, staff and subjects are
unable to guess the treatment group to which they will be
assigned; thus, minimizing the determinism of the assign-
ment. As observed earlier, a major problem of complete
randomization is the non-zero probability of imbalance
in treatment assignation, in addition to the smaller, but
still non-zero, probability of major imbalance. Imbal-
ances may affect the statistical properties of the study
including a decrease in the precision of the estimators for
treatment group differences and a decrease in the power of

a statistical test. Moderate to large imbalances in the
number of subjects assigned to treatment may affect the
power of a statistical test. Generally, in clinical trials with
sample sizes greater than 200 it is highly unlikely that the
power of a test will be largely affected by treatment imbal-
ances [3].

Imbalance in the number of subjects assigned to treat-
ment may affect the power of a statistical test, but will not
bias the estimate of the treatment effect [16]. Biased treat-
ment effect estimates can occur in the presence of covari-
ate imbalance. The goal of many randomization schemes
is, therefore, not only to minimize the imbalance, which
occurs when the numbers of subjects assigned to treat-
ment are not equal, but also to minimize the imbalance
that occurs when the subjects within treatment groups dif-
fer with respect to covariates. Unfortunately, complete
randomization does not control for covariate imbalance.
Also, stratification cannot be used with complete rand-
omization to improve covariate imbalance because the
probability of imbalance for the complete randomization
scheme is equal to the probability of imbalance for the
stratified complete randomization scheme [3]. However,
perfect covariate balance can be attained using both strat-
ification and simple randomization. That is, participants
may be grouped by covariates and randomized within
strata given the restriction that the total number of people
assigned to each treatment within a particular stratum is
equal.

Restricted randomization: permuted blocks as an example
Certain methods of restricted randomization attempt to
correct for the probability of treatment imbalance by
imposing the restriction that the final allocation is exactly
equal between treatment groups. Simple randomization,
mentioned previously, has the restriction that the total
number of people assigned to each treatment within a
particular stratum is equal. However, the balance in treat-
ment numbers is not obtained until the total sample size
is reached. Randomizing participants within sequential
blocks is an example of a design, which improves balance
in the number of treatment assignments throughout the
length of the study [3,16].

By imposing balance restriction at interval periods, this
block design ensures that the number of subjects assigned
to treatment is balanced throughout the course of the trial.
However, block designs may appear deterministic in an
unblinded setting due to the periodic balance invoked at
the end of each block [17]. Although treatment balance is
achieved using the block design, selection bias may occur
due to deterministic nature of every even randomization.
For example given a three treatment clinical trial with a
block size of six where the first five subjects have a treat-
ment assignment sequence of '2,3,1,1,2' then the next
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assignment of 3 is known and therefore deterministic.
Selection bias may be reduced utilizing a variable block
design where block size itself is randomly selected, i.e. a
permuted block design. Finally, the blocked randomiza-
tion scheme does not provide restrictions for covariate
balance.

Covariate balance and treatment balance may be obtained
by using a stratified permuted block design where a per-
muted block randomization scheme is preformed within
each stratum. Strata must be limited for the blocked
design since stratifying a permuted block designs permits
a maximum of unfilled blocks equal to the additive
number of levels within each strata. Multiple unfilled
blocks may produce treatment imbalance. In summary,
stratified permuted block randomization will create
approximate treatment balance in strata; however, imbal-
ance for the total trial may still occur when there are a
large number of strata or the block sizes are too large for
the number of patients enrolled [18].

A major advantage of the permuted block design is its ease
of implementation. Once stratifying factors, block size
and number of treatment arms have been determined a
schedule of treatment assignment may be produced
before the clinical trial begins. The treatment assignment
then remains static throughout the course of the trial. A
proper analysis that includes all stratifying factors and
block can then be performed to ascertain whether treat-
ment effect differences exist.

Urn randomization
A permuted block design is a non-adaptive procedure or a
method of 'fixed' allocation (the probability of treatment
assignment is unchanging throughout the course of a
trial). Adaptive randomization changes or varies the prob-
ability of allocation as the trial progresses. It is a dynamic
not a static process for treatment assignments as enroll-
ment accrues. As long as treatments are balanced, partici-
pants will have equal probability of assignation. At any
accrual point at which an imbalance occurs, the adaptive
randomization allocation probability is adjusted so that
the probability of assignment is higher for the treatment
arm with fewer participants, i.e. treatment imbalances are
corrected as the trial's enrollment progresses. We describe
an example of an adaptive scheme, the urn randomization
process, in the following paragraphs.

The urn design [31] incorporates probabilities of assign-
ment that adapt according to the degree of treatment
imbalance. Wei's urn design may be described as follows:
an urn contains a set number of balls of two types 1 and
2. Upon randomization of a particular participant a ball is
drawn and replaced, if the ball is of type 1 then the partic-
ipants is assigned treatment 1 and a set number type 2

balls are added to the urn; whereas, if a ball of type 2 is
drawn the participant is assigned treatment 2 anda set
number of type 1 balls are added to the urn. Thus the
composition of the urn is such that the probability of
assignment is larger for the treatment type, which has
been, selected less often at any point in the trial.

For clinical trials with small sample size, urn randomiza-
tion forces balance but as the sample size increases the
allocation process can be shown to approach that of com-
plete randomization [19]. The urn randomization design
is a compromise between complete randomization design
and the permuted block design; the probability of correct
guess is lower for the urn design compared to the blocked
design but is higher than that for complete randomiza-
tion. The primary focus of urn randomization is that of
randomization not balance [9]. However, the urn rand-
omization scheme greatly reduces the probability of treat-
ment imbalance compared to complete randomization
whereas treatment imbalance is eliminated in blocked
schemes with all blocks filled. There are several difficulties
with urn randomization, one being the greater difficulty
in logistics of its implementation – it is not a schedule
produced in advance; it is a dynamic process. Finally, urn
randomization does not always provide restrictions on
covariate balance; however, like the simple randomiza-
tion and permuted block designs, subjects may be strati-
fied on pertinent covariates and assignment may be
executed for each level of a stratification factor.

Covariate adaptive
In the case that several covariates are known a priori to
influence outcome, covariate adaptive randomization
methodology may be used to force balance over both
treatment and prognostic factors [20,21]. The primary
role of covariate adaptive randomization unlike simple,
blocked and urn randomization is to balance not only
treatment totals but also prognostic factor distributions
between treatments [9]. Stratified randomization has the
same goals of balance as the covariate adaptive scheme;
however, while stratified randomization promotes parsi-
mony in selection of stratification factors covariate adap-
tive methods utilizes all covariates thought to influence
response.

Covariate adaptive randomization utilizes the method of
minimization by assessing the extent of treatment imbal-
ance incorporating several covariates. Power is maximized
in the instance that treatment groups are equal in size.
Also, when covariates known to affect outcome are
equally distributed across groups the treatment effect esti-
mates will remain unbiased. The covariate adaptive rand-
omization scheme balances total treatment numbers
while simultaneously balancing treatment assignments
within covariate factors. Minimization allows for a maxi-
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mum number of covariates to be incorporated into the
randomization scheme while stratification requires a min-
imal number in order to prevent over stratification.
Finally, covariate adaptive randomization is a dynamic
process; therefore, does not have the ease of implementa-
tion inherent in complete, simple or blocked randomiza-
tion schedules. However, computer programs can be
readily written to implement a covariate adaptive scheme.

Methods
The balancing properties of several randomization tech-
niques (complete, simple blocked, urn and covariate
adaptive) were compared using the properties of the CBT
and Modafinil for Cocaine Addiction Clinical Trial: a
NIDA Phase II study. The trial is a clinical example of the
multitude of factors, which must be considered when
choosing the most favorable randomization scheme.
Properties of the clinical trial include: the principal out-
come of interest is continuous (total number of non-use
cocaine days), three treatment arms (placebo, 200 mg
Modafinil, and 400 mg Modafinil) and several covariates
(gender and total days of cocaine use (>10, < = 10) 30
days prior to treatment) known a priori to be highly asso-
ciated with outcome. Also, the expected gender distribu-
tion of the target population is approximately 25% female
and 75% male; the expected cocaine days in the target
population is 50% for greater than 10 days of cocaine use
in the past 30 days and 50% for less than or equal to 10
days of cocaine use in the past 30 days. Other covariates,
which may be of interest but are not as strongly associated
with outcome, include severity of withdrawal symptoms,
severity of depressive symptoms, and presence or absence
of Attention Deficit Hyperactivity Disorder (ADHD). The
prevalence of comorbidities in the cocaine dependent
population is as follows: 15% of cocaine users seeking
treatment have adult ADHD, 30% have depression and
50% have high vs. low withdrawal symptoms [22-25].
Finally, based on simple power considerations, the total
planned enrollment of subjects is estimated to be 264.

The comparisons of the allocation methods described ear-
lier utilize Monte Carlo simulated data based on the par-
ticular properties of this Modafinil protocol. Covariates of
gender and past cocaine use were selected on the basis of
biological significance and past studies [22,26,27]. Rand-
omization methods were compared with respect to both
treatment and covariate imbalance.

Using SAS version 9.0 [28] a random number was simu-
lated and assigned to a treatment group using the rand-
omization procedures described above until a sample of
264 was reached. In order to assess treatment imbalance
for each of the randomizations schemes, the range of
imbalance was computed for each simulation.

The range of imbalance was computed as the difference
between the number of patients in the largest treatment
group compared to that in the smallest treatment group.
Letting Nk equal the number of patients given treatment k
where k = (1, 2, ..., K), the range of imbalance is defined
as:

Range = max (N1, N2, N3) - min (N1, N2, N3) [20,29]

Comparisons of prognostic factor imbalance across treat-
ments were evaluated for the various random allocation
procedures. A population of subjects was generated with
the prognostic factor characteristics of gender and low or
high previous cocaine use. At each stage of the simulation,
a subject was sampled from the population of subjects
and assigned a treatment utilizing the various allocation
methods. Once a sample size of 264 was reached, the
imbalance in the distribution of prognostic factors
between treatments for each allocation method was meas-
ured and compared for the randomization schemes. For
each comparison, one thousand simulations were pre-
formed.

The level of imbalance for treatment groups within the
level of a binary prognostic factor was calculated by letting
an arbitrary prognostic factor, defined as Xjk, have a joint
multinomial distribution with index, N, and equal prob-
abilities [20,30].

Then q11 = X11 / (X11 + X21 + X31) and q12 = X12 / (X12 + X22
+ X32) are the proportion of subjects in each factor level on
treatment 1. Proportions of subjects in each factor level
for each treatment were then calculated. The treatment
imbalance for factor 1 is defined as max |qj1 - qj2| where j
= 1, ..., 3 treatments. Using this methodology a maximum
range of imbalance was recorded for each factor and com-
pared for each allocation procedure.

Finally, simple randomization with stratification was
compared with the covariate adaptive scheme with respect
to imbalance in non-stratifying factors. Covariate adaptive
randomization utilizes the method of minimization by
assessing the extent of treatment imbalance incorporating
all covariates thought to influence outcome [20]. On the
other hand, stratification reduces imbalances in distribu-
tions of only a few covariates known to be highly associ-
ated with outcome. For the Modafinil trial simulations,
simple randomization supplemented with the stratifica-
tion factors of cocaine use and gender, which are known
to be highly associated with outcome, was compared to
the adaptive randomization scheme in which minimiza-
tion factors included all known to be associated with out-
come (cocaine use, gender, withdrawal, ADHD presence,
and depression). Specifically, subjects were sampled from
the cocaine dependent population having the prognostic
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factor characteristics of gender, low or high previous
cocaine use, low or high withdrawal symptoms, presence
or absence of ADHD and presence or absence of depres-
sion. At each stage of the simulation, a subject was sam-
pled from the population and assigned to a treatment
utilizing the various allocation methods.

In order to characterize the covariate balancing properties
of these schemes under a smaller sample size assumption,
further simulations were conducted given a total sample
size of 66. Once a sample size of 66 or 264 was reached,
the imbalance in the distribution of prognostic factors of
withdrawal, ADHD and depression between treatments
for each allocation method was measured and compared
for the randomization schemes. That is, the imbalance of
three non-stratifying covariates in the simple randomiza-
tion was compared to the same three minimization factor
used for the adaptive scheme. Results were used to assess

whether minimization using all five covariates was more
advantageous than stratification using two covariates
(cocaine use and gender) given these small and moderate
sample sizes.

Results and discussion
Total treatment balance
To indicate the degree of treatment imbalance obtained
under complete, urn and adaptive randomization, Figures
1 plots the cumulative frequency distribution of the range
of imbalance over 1000 simulations. The plot demon-
strates the probability of treatment assignment imbal-
ance, which can occur under each randomization scheme.
As indicated in the plot, for about 60% of the simulations
the range of imbalance was approximately less than 20 for
complete randomization, less than 15 for urn randomiza-
tion and less than 10 for adaptive randomization.
Although rare in occurrence, for complete randomization

Adaptive (2 covariates), urn and complete randomization (n = 264, treatments = 3, simulations = 1000)Figure 1
Adaptive (2 covariates), urn and complete randomization (n = 264, treatments = 3, simulations = 1000).
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Table 2: Total treatment balance: mean and variance (n = 264, simulations = 1000)

RANDOMIZATION 
PROCEDURE

TREATMENT E(NT(n)/n) VAR(NT(n)/n)

COMPLETE 1 0.3323 0.0013
2 0.3345
3 0.3332

URN 1 0.3311 0.0007
2 0.3344
3 0.3345

COVARIATE ADAPTIVE (2 
COVARIATES)

1 0.3345 0.0001

2 0.3352
3 0.3305

COVARIATE ADAPTIVE (5 
COVARIATES)

1 0.3351 0.0001

2 0.3337
3 0.3312

Complete and adaptive randomization: cocaine covariate imbalance (treatments = 3 simulations = 1000)Figure 2
Complete and adaptive randomization: cocaine covariate imbalance (treatments = 3 simulations = 1000).
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tions was 60. Urn randomization had a maximum imbal-
ance of approximately 40 while adaptive randomization
has a maximum imbalance less than 20. Simple and
blocked randomization were not plotted since they are
restricted to produce perfect treament balance.

Table 2 compares complete, urn, adaptive randomization
given two minimization factors and adaptive randomiza-
tion given five minimization factors with respect to the
mean and variance of imbalance of total treatment alloca-
tion computed over 1000 simulations. Results indicate
that the urn randomization scheme has less variability
compared to complete randomization with both adaptive
randomizations having the smallest variability. Adaptive
randomization given 2 minimization factors has the same
variability in total treatment balance as adaptive randomi-
zation given 5 minimization factors. All schemes show lit-
tle bias (all three treatment groups have a mean number

of subjects of about .333). The simple randomization and
blocked randomization are not compared to complete,
urn and adaptive randomization because the simple ran-
domization will always produce perfect treatment balance
and as long as blocks are filled, blocked randomization
will also produce perfect treatment balance.

Covariate balance
In this section, we are interested in comparing whether
randomization techniques that balance covariate distribu-
tions between treatment arms are useful given a moderate
size clinical trial. As mentioned previously, using stratifi-
cation with simple or blocked randomization will pro-
duce perfect covariate balance between treatment arms.
However, selection of stratifying factors must be mini-
mized. On the other hand, covariate adaptive randomiza-
tion uses all covariates known a priori to influence
treatment to produce balance. However, covariate adap-

Complete and adaptive randomization: gender covariate imbalance (treatments = 3 simulations = 1000)Figure 3
Complete and adaptive randomization: gender covariate imbalance (treatments = 3 simulations = 1000).
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tive randomization will produce slightly less balance in
covariate distributions between treatment arms.

Using no stratification and simple, blocked or urn rand-
omization will produce identical amounts of covariate
imbalance as complete randomization since these rand-
omization techniques focus on balances in the total
number of subjects assigned to treatment arms and not
balances of prognostic factors between treatment arms.
Whether complete, simple, permuted block or urn rand-
omization is used to illustrate covariate balance is negligi-
ble. For convenience, comparisons of covariate balance
are illustrated in figures 2 and 3 using complete randomi-
zation (with no stratification) versus covariate adaptive
randomization. The results are used to demonstrate that
given a sample size of 264, randomization techniques that
focus on covariate balance may not be necessary. If a tech-
nique is utilized to minimize covariate imbalance, it is
best to use a simplistic technique such as stratification
rather than more complex techniques such as covariate
adaptive randomization e.g. minimization. The results of
this study, in general, apply to clinical trials of moderate
to large sample sizes. Therefore, a small sample size of 66
may require more stringent restrictions on covariate bal-
ance.

Figures 2 and 3 plot the cumulative frequency distribution
of cocaine use (distributed 50:50) imbalance and gender
(distributed 25:75) imbalance between treatment arms
respectively. Both the cocaine covariate and the gender
covariate demonstrate least imbalance given that an adap-
tive randomization scheme was utilized compared to a
non-stratified complete randomization scheme. Also,
fewer imbalances are demonstrated for the adaptive
scheme with only two minimizing factors compared to
the scheme with five minimizing factors. This is an inter-
esting finding, further emphasizing the importance of
selecting only the most powerful factors when considering
restriction on randomization.

As expected, covariate imbalance for a sample size of 264
is much less than covariate imbalance for a sample size of
66. Specifically, complete randomization given a sample
size of 264 and adaptive randomization given a sample
size of 264 have small imbalance overall. Although com-
plete randomization does demonstrate a higher probabil-
ity of imbalance than adaptive randomization both
schemes have very small maximum imbalances. There-
fore, complete randomization may be expected to be as
effective in balancing covariate distributions between
treatment arms as adaptive randomization given a moder-
ate to large sized clinical trial.

Overall results demonstrate little variability in covariate
imbalance between randomization procedures given a
moderate to large clinical trial. Therefore in the case of the
Modafinil trial, which has a sample size of 264, randomi-
zation restrictions that control for covariate imbalance
may not be necessary, and certainly if restrictions are to be
imposed, then stratification on cocaine use and gender
alone is the most reasonable strategy. However, results
will vary for smaller trials [13] thus illustrating the impor-
tance of assessing the properties of each clinical trial inde-
pendently in order to choose the most optimal scheme.

In order to demonstrate that a small sample size of 66
may require more stringent restrictions on covariate bal-
ance compared to a sample size of 264, the ratio of imbal-
ance given the two sample sizes of 66 and 264 is
illustrated in Table 3. In general, results of the covariate
imbalance indicate a 1.5 to 3 times increase in covariate
imbalance given a sample size of 66 compared to a sample
size of 264. However, for covariate adaptive randomiza-
tion, for both the 2 factor and 5 factor versions, there is lit-
tle difference in treatment imbalance within gender for a
sample size of 66 or 264. This may be due to the unequal
ratio of males to females (25:75). Therefore, covariate
adaptive randomization may be most appropriate in situ-
ation of equal distributions of covariates. Since this is an

Table 3: Chart of the ratio of imbalance given the two sample sizes of 66 and 264

Ratio of Imbalance (n = 66)/(n = 264)

RANDOMIZATON PROCEDURE cocaine (50:50) ratio gender (25:75) ratio

COMPLETE OR SIMPLE 1.99 2.50
STRATIFIED SIMPLE
URN 3.04 1.53
STRATIFIED URN 1.90 2.80
BLOCKED 1.56 2.65
STRATIFIED BLOCKED
COVARIATE ADAPTIVE (2) 2.38 0.80
COVARIATE ADAPTIVE (5) 2.21 1.20
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unexpected finding in the study, future simulations may
need to be conducted varying covariate distribution and
sample size to clarify the relationship between varying
covariate distributions and balancing properties on cov-
ariate adaptive randomization.

Simple randomization with stratification factors of
cocaine use and gender was compared to adaptive rand-
omization with five minimization factors (cocaine use,
gender, withdrawal, ADHD and depression). The three
covariates, which were not used as stratifying factors, were
then compared for differences in imbalance under the
simple randomization and the adaptive randomization
scheme. The purpose of this comparison was to determine
the necessity of controlling for all covariates thought to be
associated with outcome in the randomization process
e.g. whether covariate adaptive randomization using all
covariates is necessary or whether a simple scheme using

a few covariates as stratifying factors will suffice for mod-
erate sample sizes.

Figures 4, 5 to 6 demonstrate the imbalance produced by
the non-stratifying factors of simple randomization com-
pared to the imbalance of the same factors used for mini-
mization in the adaptive randomization scheme. Overall
results demonstrate much more imbalance given a sample
size of 66 compared to a sample size of 264. Given a sam-
ple size of 66, simple randomization which does not strat-
ify by ADHD, withdrawal and depression is much more
imbalanced than the adaptive scheme which uses all five
covariates as minimization factors. Also, imbalance varies
dependent on the distribution of the covariate. For with-
drawal, which is distributed 50:50, the adaptive scheme
has a smaller maximum of imbalance than the simple ran-
domization. For the depression covariate, which is distrib-
uted 30:70, and the ADHD covariate, which is distributed

Non-stratifying factors: stratified simple vs. adaptive (5 covariates) for n = 66 and n = 264Figure 4
Non-stratifying factors: stratified simple vs. adaptive (5 covariates) for n = 66 and n = 264.
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15:85, the maximum covariate imbalance is the same for
simple randomization and the covariate adaptive scheme.

Given a sample size of 264, results demonstrate that
imbalance is similar for both the non-stratifying factors of
simple randomization and the minimization factors of
the adaptive scheme. Although the adaptive scheme had
less probability of imbalance overall compared to the sim-
ple randomization, for all covariates the maximum imbal-
ance for both schemes was around .2. Therefore given a
moderate to large sample sizes, the simple scheme may be
as justified for use as the adaptive scheme.

In summary, using the properties of the Modafinil clinical
trial for purposes of simulation demonstrated large treat-
ment imbalance in complete randomization with less
imbalance for the urn or adaptive scheme. Randomiza-
tion methods, such as the urn or adaptive, have smaller
treatment imbalance as demonstrated by the low variabil-

ity of treatment allocation imbalance. For all randomiza-
tion schemes, covariate imbalance between treatment
arms is small which may be due to the large size of the
Modafinil trial (n = 264). Covariate imbalance may be
better-controlled using stratification or adaptive baseline
randomization for trial of small size but is less of an issue
for this Modafinil trial. An optimal randomization
scheme for the Modafinil trial should focus on treatment
balance with less focus on covariate balance. Specifically,
a simple or blocked scheme with a one or two stratifica-
tion factors will be as effective as the more complex urn or
highly adaptive schemes.

Randomization techniques and statistical analysis
Stratification was defined above as a technique, which
partitions participants into mutually exclusive subsets
defined by initial covariates thought to influence response
in order to reduce accidental bias. An advantage of strati-
fication in the design stage is an increase in power: the

Non-stratifying factors: stratified simple vs. adaptive (5 covariates) for n = 66 and n = 264Figure 5
Non-stratifying factors: stratified simple vs. adaptive (5 covariates) for n = 66 and n = 264.
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ability to detect a difference in treatment groups when a
difference truly exists. However, unstratified randomiza-
tion in moderate to large trials is approximately equiva-
lent with respect to power to that of stratified
randomization [3]. Therefore, for moderate to large clini-
cal trials stratified randomization versus a stratified anal-
ysis following a non-stratified randomization may be
negligible. However, given a stratified randomization, a
stratified analysis should follow. Studies of 100 partici-
pants demonstrate that stratified randomization with
adjusted model-based population analyses increases
power by up to 12% compared to no stratification with
non-adjusted analysis [11,13,15].

A stratified block design utilizes a block randomization
scheme within each stratum, which not only minimizes
imbalance among treatment but also minimizes imbal-
ance over covariates that may be related to the response
variable. However, a stratified permuted block design has

a higher chance of unfilled blocks than a permuted
blocked scheme alone; hence it is important to limit the
number of strata to the most important covariates to min-
imize the risk of treatment imbalance. Hallstrom and
Davis [18] demonstrate that stratified permuted block
randomization will create approximate treatment balance
in strata; however, imbalance for the total trial may still
occur when there is a large number of a stratum or the
block sizes are too large for the number of participants
enrolled.

The principal of blocking is to increase the power for treat-
ment comparisons by dividing experimental units into
homogenous strata and then pooling the treatment group
differences over blocks [17]. In the instance of a clinical
trila where patients are gradually accrued over time, par-
ticipants may be time heterogeneous. Therefore, incorpo-
rating blocking within the analysis should provide a more
powerful test of the treatment effect. Data may be exam-

Non-stratifying factors: stratified simple vs. adaptive (5 covariates) for n = 66 and n = 264Figure 6
Non-stratifying factors: stratified simple vs. adaptive (5 covariates) for n = 66 and n = 264.
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ined for the existence of an intrablock correlation (partic-
ipant responses within blocks may be positively
correlated because they are recruited closer in time) and a
block-stratified analysis may be required dependent on
the existence of an intrablock correlation due to time het-
erogeneity [11,17]. In the instance of a positive intra-
block correlation, an analysis ignoring block will be con-
servative (have higher Type II error).

In the statistical literature, discussions of analysis given
that urn randomization was utilized in the design stage of
the study promote the use of permutation tests [7,19]. The
effect of ignoring the randomization in the presence of
heterogeneity is not as easily illustrated as that of blocked
randomization. Additionally, tests based on a permuta-
tion model for the urn design may differ substantially
from tests based on a parametric or population model
(normal distribution, variance homogeneity, etc.). Due to
the inherent time heterogeneity expected in a clinical trial
as well as the difficulty in quantifying the effect of urn ran-
domization on outcome, the proper permutation tests
whose variance account for randomization restrictions are
suggested over the use of statistical tests based on popula-
tion models [31].

An example of the effect of ignoring the randomization in
the analyses is the extra corporeal membrane oxygenation
(ECMO) versus standard therapy clinical trial for infants
with persistent pulmonary hypertension [32]. The ECMO
study was designed using outcome adaptive randomization
(not covered in this paper), i.e. the randomized play the
winner (RPW) rule of Zelen [33]. Wei [19] demonstrated
the differences in significance that can occur when the
randomization is ignored in the analysis. Conclusions of
the analyses of the ECMO study were that the statistical
significance of treatment effect was inflated when the ran-
domization design was ignored in the analysis.

Covariate adaptive randomization utilizes the method of
minimization assuring that treatment arms are balanced
within various strata of predefined covariates [20,21]. A
disadvantage of covariate adaptive randomization is the
complexity introduced into the analysis. Taves promoted
the use of ANCOVA for analysis where all covariates used
as minimization factors are also used in the analysis [21].
However, the correct statistical methods for covariate
adaptive randomization of analysis are still a conundrum
in statistical sciences [3,34,35]. Along with ANCOVA, per-
mutation tests which take into account the particulars of
the adaptive randomization scheme have been suggested
for analysis.

In conclusion, given that all assumptions are met the type
of randomization scheme may be ignored in the analysis
and the population model may be used as a method of

inference. However, assumptions based on population
models are tenuous at best. In the case of accrual in a clin-
ical trial where time heterogeneity of outcome is likely,
population-based tests may not be valid. Permutation
tests on the other hand assume nothing about the data
except that participants were randomized. Under the per-
mutation model of inference, restrictions of the randomi-
zation scheme may be incorporated into the analysis.
Much of the statistical literature on randomization and
analysis suggests incorporating a permutation method of
analysis for a blocked design in the presence of intrablock
correlation, for the urn design where time heterogeneity is
not as easily assessed and for covariate adaptive design
where minimization complicates the analysis [3,6,7,9-
11,18,31,36]. In summary, failure to account for restric-
tion in analysis may result in conservative tests of signifi-
cance. This aspect of clinical trial design and analysis
requires further investigation, particularly implications
for substance abuse trials.

Conclusion
The purpose of the article was to review several randomi-
zation techniques used in practice in order to aid the sub-
stance abuse researcher in designing and analyzing a RCT.
Complete, simple, blocked, urn and covariate adaptive
designs were compared with respect to balancing proper-
ties and their implications on statistical analysis. Com-
plete randomization minimizes selection bias; however,
has the maximum amount of treatment imbalance. As
long as blocks are filled, blocked randomization elimi-
nates treatment imbalance but may be more deterministic
due to periodic balancing properties. Urn randomization
is less deterministic than blocked randomization and has
lower probability of imbalance in small sample sizes than
complete randomization. Covariate adaptive randomiza-
tion not only minimizes overall treatment imbalances but
also minimizes the imbalances in prognostic factor distri-
butions.

Balancing properties of the randomization schemes were
further discussed using a clinical application, The Cogni-
tive Behavioural Therapy (CBT) and Modafinil for
Cocaine Addiction Clinical Trial. Simulation studies using
the properties of the Modafinil RCT demonstrated large
treatment imbalance in complete randomization; while,
urn randomization scheme demonstrated small treatment
imbalance and covariate adaptive randomization demon-
strated the least imbalance.

For all randomization schemes, covariate imbalance
between treatment arms was small with little variation
between adaptive schemes, stratified schemes and unstrat-
ified schemes given that sample size was moderate to
large. Given the specific properties of the Modafinil trial,
the particular randomization scheme chosen may want to
Page 14 of 17
(page number not for citation purposes)



Substance Abuse Treatment, Prevention, and Policy 2006, 1:6 http://www.substanceabusepolicy.com/content/1/1/6
focus on treatment balance restrictions rather than a cov-
ariate balance restraints. However, the substance abuse
researcher should note that results might vary for trials of
smaller sample size, more stratification factors, or a differ-
ent number of treatment arms [13].

Finally, tests of statistical significance for randomized
studies can be based on either a permutation model or a
population model. Whereas a permutation model
requires no assumptions regarding the origin of the study
participants or the distribution of their responses a popu-
lation model (most often used in clinical studies) assumes
that participants were sampled at random from a homog-
enous population and their responses follow a common
distribution [7]. Under the assumption of a homogenous
or unchanging population, the method of randomization
may be ignored in the analysis; however, one should not
automatically assume homogeneity for most clinical tri-
als. Permutation methods of analysis have been suggested
for the urn and covariate adaptive schemes. The analysis
becomes more complicated by these restrictions placed on
the probability of assignation [3,9,10,31]. Furthermore,
whether or not a permutation or population model is
assumed, covariates used for randomization techniques
such as stratification or minimization should be
accounted for in the analysis stage of the study [9].

There are many issues associated with the design of clini-
cal trials in substance abuse research. Randomization rep-
resents one of the many design features typically under
consideration. While the use of adaptive randomization
designs and urn allocation methods has become increasingly
popular, it is noteworthy that simply conceived stratification
designs with simple or permuted blocked randomization sched-
ules within strata continue to offer an efficient, as well as easily
implemented alternative. There are many factors to consider
in designing such trials, and there may be too quick a ten-
dency to try to correct for every conceivable confounding
baseline factor. Parsimony in baseline factor selection
coupled with simple stratification and randomization
offer the substance abuse clinical trialist some straightfor-
ward and powerful design tools.

Finally, randomized clinical trials are the gold standard of
evidence-based medicine. The top tier of the hierarchy of
evidence-based medicine includes clinical trials that are
less vulnerable to bias, are generalizable and are valid [1].
Randomization techniques, when used appropriately,
serve to lessen the vulnerability of a study to bias and pro-
vide validity for tests of statistical significance [3].  There-
fore, increasing the knowledge base of randomization
techniques for substance abuse clinical trials promotes
strong study design, which in turn, promotes confidence
that the outcomes observed are due to the treatment
under study.
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Appendices
Appendix 1: Complete randomization
Complete randomization is often described as 'a toss of a
fair coin' whereby a participant is assigned to treatment 1
if the toss of a coin produces a head and is otherwise
assigned to treatment 2. Probabilistically, complete rand-
omization is defined letting T1, ..., Tn be a sequence of ran-
dom treatment assignment where i = 1 to n. Then T =1
when a participant is assigned to treatment 1 and T = 0
when a participant is assigned to treatment 2. Complete
randomization assumes that T1, ..., Tn are independent
identically distributed Bernoulli random variables where
P(Ti = 1) = 1/2.

Complete randomization may also be generalized to clin-
ical trials with three treatment arms. Letting T1, ..., Tn be a
sequence of random treatment assignments assume that
each of the n independent, identical trials have an out-
come in any three treatments. Then Ti = j; j = 1, ..., 3 if par-
ticipant i has outcome in treatment j. T1, ..., Tn are
independent identically distributed (i.i.d) random varia-
bles with P(Ti = j) = 1/3; j = 1, 2, 3; i = 1, ..., n. For K>2
groups, complete randomization becomes 'a simple
multinomial probability generator' [3,16].

Appendix 2: Permuted block as an example
A block is defined as a pre-specified number of subjects
who are randomized to an equal proportion of treatment
assignments [16,17]. Specifically, the block design con-
sists of M blocks containing n = N/M participants where N
is the total sample size. Within each block given two treat-
ment arms, n/2 participants are assigned to treatment 1
and n/2 are assigned to treatment 2. A random allocation
rule is utilized in each block to ensure balance throughout
the course of the trial. In other words, at any M stage in the
course of a trial allocation (at the end of each block of
assignments) perfect balance occurs. Also, the maximum
amount of imbalance that can occur at any point in time
during a trial is limited to n/2. Finally, block designs are
easily generalized to k>2 treatments. For three treatments,
the block design may be described as follows: the block
design consists of M blocks containing n = N/M partici-
pants; within each block, n/3 participants are assigned to
each of the j = 1, ..., 3 treatments.

Appendix 3: Urn randomization
The urn design [31], a form of adaptive randomization,
incorporates probabilities of assignment that adapt
according to the degree of treatment imbalance. Wei's urn
design may be described as follows: an urn contains α
balls of two types 1 and 2. Upon randomization of a par-
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ticular participant a ball is drawn and replaced, if the ball
is of type 1 then the participants is assigned treatment 1
and β type 2 balls are added to the urn; whereas, if a ball
of type 2 is drawn the participant is assigned treatment 2
and β type 1 balls are added to the urn. Thus the compo-
sition of the urn is such that the probability of assignment
is larger for the treatment type, which has been, selected
less often at any point in the trial. For two treatment arms
we can let N1 and N2 be the proportion of participants ran-
domized to treatment arm 1 and 2 out of the total partic-
ipants randomized at any point in the trial. Fn is defined
as the set of treatment assignments which have been allo-
cated at any n stage of the randomization process, Fn =
{T1, ..., Tn}. Fj-1 may then be defined as the set of treatment
assignments which have been allocated previous to the
current treatment to be assigned where Tj is the current
treatment to be assigned.

The urn design is denoted UD(α, β) and has the following
allocation rule:

; where for the first

treatment assignment P(T1/F0) = 1/2. For UD(0, 1) an urn

that contains zero balls at the beginning of the study and
adds one ball after each assignment, the allocation rule

simplifies to . For example, the

probability of the 51st assignment to treatment two given
that 22 out of the first 50 assignments were assigned treat-

ment two is . There-

fore for the UD(0, 1) design there is a 56% chance that the
next assignment will be treatment 2 and a 44% chance
that the next assignment will be treatment 1 given that 22
out of the first 50 assignments where to treatment 2.

Wei's UD(0,1) design may be generalized to three treat-

ment groups as follows: for the UD(α, β) design the urn

contains α balls that represent each treatment initially.

Then β balls are added to the urn for each other treatment
after each assignment [16]. The probability that the jth
assignment is to treatment i given the previous j-1 assign-
ments when UD(0, 1) is as follows:

 where i = 1,2,3 represent

each of the three treatment arms.

Appendix 4: Covariate adaptive randomization
Covariate adaptive randomization can be described for
three treatment arms letting xij equal the number of sub-
jects already assigned to treatment j (j = 1, ..., k) who have
the same level of prognostic factor i (i = 1, ..., p) as the sub-
ject to be assigned currently [20,37]. The change in bal-
ance allocation when a subject is assigned treatment k can
then be represented as follows:

A function of the xk
ij, such as the range or variance, may

then be defined that measures the imbalance overall prog-
nostic factors given that the new subject was assigned
treatment k. Finally, the treatment assignment which min-
imizes the imbalance can be assigned with probability
greater than 1/3.
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Table 1: Illustration of patient numbers by treatment with 3 levels and covariate with 2 levels
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Treatment 1 2

1 X11 X12
2 X21 X22
3 X31 X32
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