
RESEARCH Open Access

Assessing the impact of Indiana legislation
on opioid-based doctor shopping among
Medicaid-enrolled pregnant women: a
regression analysis
Sukhada S. Joshi1, Nicole Adams2, Yuehwern Yih1 and Paul M. Griffin3*

Abstract

Background: States have passed various legislative acts in an attempt to reduce opioid prescribing and
corresponding doctor shopping, including prescription drug monitoring programs. This study seeks to determine
the association between two state-based interventions enacted in Indiana and the level of doctor shopping among
Medicaid-enrolled pregnant women.

Methods: Indiana Medicaid claims data over the period of January 2014 to March 2019 were used in a regression
model to determine the longitudinal change in percentage of pregnant women engaged in doctor shopping
based on passage of Indiana Administrative Code Title 884 in 2014 and Public Law 194 in 2018. The primary
reasons for prescribing were also identified.

Results: There were 37,451 women that had both pregnancy and prescription opioid claims over the time horizon.
Of these, 2130 women met the criteria for doctor shopping. Doctor shopping continued to increase over the time
between the passage of the two interventions but decreased after passage of Public Law 194.

Conclusion: The decrease in doctor shopping among Medicaid-enrolled pregnant women after passage of Public
Law 194 points to the importance of addressing this issue across a broad set of healthcare professionals including
nurse practitioners and physician assistants. It is also possible that the potential punitive component in the Law for
non-compliance played a role.
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Introduction
Over 42% of opioid-related overdose deaths for US
women were due to prescription opioids in 2018 [1].
Prescription opioid use among pregnant women has
risen significantly since 2000 [2, 3]. In 2019, 6.6% of
pregnant women in the US reported prescription
opioid use [4], though previous studies have found

that 14 to 22% of Medicaid-enrolled pregnant
women filled at least one opioid prescription during
pregnancy [5]. In addition to harms to the mother,
opioid use during pregnancy has also been associated
with poor infant outcomes including neonatal abstin-
ence syndrome (NAS). NAS incidence increased
nationally from 1.6 per 1000 in-hospital births in
2004 to 8.8 per 1000 births in 2016 [6] with
Medicaid covering 82% of those births in 2014 [7].
Opioid doctor shopping is the practice of using mul-

tiple concurrent prescribers to obtain opioid-based
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prescription drugs and may be due to reasons of misuse
from addiction or diversion [8, 9]. Patients that doctor
shop for opioids are at a greater risk of opioid use, in-
jury, and overdose death [8, 10]. Studies on longitudinal
trends of doctor shopping prevalence have been mixed.
For example, one study found both an increase in mor-
phine equivalent dose (MED) and doctor shopping in
California from 2008 to 2012 [11], while another found a
geographically widespread decline nationally over that
same time period [12]. However, in many states, guide-
lines and recommendations have been implemented in
an effort to reduce opioid prescribing for a variety of
conditions [13, 14]. These include national guidelines
such as those developed by the Centers for Disease
Control and Prevention [15] and Veteran’s Administra-
tion [16] and numerous state level interventions [17].
There have been a variety of programs and/or legislation

at the state level that attempt to reduce opioid prescribing,
diversion, and misuse. For example, prescription drug mon-
itoring programs (PDMP) in the form of electronic data-
bases to track controlled substance prescriptions have been
implemented in all 50 states. With the exception of a re-
duction in prescription opioid-related death rates [18, 19],
evidence of their efficacy has been weak [20–23]. Patients
that doctor shop for opioids generally receive prescriptions
from high volume prescribers [24, 25] and do not receive a
significant supply from episodic providers, thus potentially
negating the effectiveness of prescription reduction efforts
at episodic settings [25].
Indiana enacted two state-based interventions, Opioid

Prescribing Requirements created by the Medical Licens-
ing Board and filed under Indiana Administrative Code
884 IAC 5–6 in December 2013 and Indiana Public Law
194 in March 2018, the first states that prescribers
“shall” consult the PDMP and the latter “requires” pro-
viders to do so prior to prescribing an opioid. The
Opioid Prescribing Requirements targeted long-term
prescribing (over 3 months) for doses over 15 MED per
day or 60 pills per month. The new law passed in 2018
applied to single prescriptions and emergency depart-
ments. We use a regression discontinuity model on
Medicaid claims to determine if there was an associated
change in the rate of opioid-based doctor shopping
among Medicaid-enrolled pregnant women following
the introduction of these policies. We also use a page-
rank algorithm to determine the most likely associated
diagnosis claims that led to a prescription.

Materials and methods
Indiana opioid-based legislation
The state of Indiana implemented the PDMP program
(INSPECT) in 2004 through the expansion of previous
legislation [26]. In 2013, the Indiana Medical Licensing
Board enacted emergency prescribing rules, which

became permanent in 2014 as the Indiana Administra-
tive Code 844 IAC 5–6. This prescribing standard for
long-term opioid users outlines many components of
assessment and care prior to beginning an opioid treat-
ment plan which included advising prescribers to review
the patients’ drug prescription history in INSPECT,
schedule periodic visits for patients prescribed opioids,
and obtain a signed patient agreement [27]. In March
2018, Senate Bill 221 passed and became Indiana Public
Law 194 which required that beginning in January 2019,
prescribers were required to review INSPECT prior to
the prescribing of any opioids for any duration [28]. This
legislation directly covers all medical practitioners and
includes potential medical negligence penalties for non-
compliance.

Data
We analyzed Indiana Medicaid claims over the period of
January 2014 to March 2019. The ICD9 and ICD10
codes (Table 1) were used to identify pregnant women
that received an opioid prescription during pregnancy.
Claims were matched to the national drug code direc-
tory [29] for prescription opiates. The billing national
provider identifiers (NPI) were used to uniquely identify
prescribers. Doctor shoppers were identified as pregnant
women with at least one pair of consecutive claims less
than 30 days apart prescribed by different providers. In
order to estimate if the change in doctor shopping was
due to a drop in the practice or due to organization
change, we compared the frequency of doctor shopping
incidents for each pregnant woman that had at least
incident both pre- and post-passage of Public Law 194
(Q1 of 2018).
Claims that were characterized as part of an

individual’s doctor shopping were dated by quarter (Q1
to Q4) each year on the basis of the claim date. The
quarter that a pregnant recipient procured the most pre-
scriptions is defined as her primary doctor shopping
quarter. For each quarter we computed percent doctor
shopping as 100*(number of pregnant women classified
as doctor shoppers/number of pregnant women that
received an opioid prescription during pregnancy).

Statistical methods
We used a regression model across the time horizon,
starting at the time of release of the Indiana Prescribing

Table 1 ICD9/10 codes for pregnancy diagnosis

Diagnosis Code ICD 9/10 Description

V22, V23 ICD 9 Pregnancy (Normal/High Risk)

O00.00-O9A.53 ICD 10 Pregnancy, childbirth and
puerperium

Z33.1-Z33.3, Z34.00-Z34.93 ICD 10 Encounter for pregnancy
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Guidelines (IAC 884 5–6, Q1 of 2014), to determine if
there was a change in the rate of doctor shopping before
and after the passage of Public Law 194 (Q1 of 2018).
Quarters were used as the time interval since it was the
smallest interval were there were a sufficient number of
pregnant that met the criteria for doctor shopping in
each period. Our time horizon consisted of 21 quarters.
The regression model used is:

Y ¼ a0 þ a1Iþ a2Rþ a3I�R

where: I equal 1 if observation is on or after the passage
of Public Law 194 (Q1 2018) and 0 otherwise; R is the
time period (quarter) minus quarter of the intervention
(so that the intervention is scaled to 0); and Y is the per-
cent doctor shopping. The key parameters of interest are
a2, which corresponds to the change in the percent doc-
tor shopping after release of IAC 884 5–6, and the inter-
action coefficient a3, which corresponds to the difference
in slopes before and after passage of Public Law 194.
We chose our regression method over other

approaches such as interrupted time series (ITS) analysis
[30] for multiple reasons. First, it is recommended that
there be at least eight post intervention observations for
ITS to be effective [31]. As our observations were quar-
terly, there were fewer than eight measurements after
passage of Public Law 194. Second, our key parameters
of interest were the slopes before and after the passage
of this intervention. Our regression model directly

estimates these parameters. Finally, visual inspection of
the change in longitudinal change in doctor shopping
percentage appears to be linear (Results), and hence a
linear model seemed the most appropriate, which did
not require the nonlinear flexibility that is possible
through ITS. Note, however, that the assumptions of lin-
ear regression include that the residuals are independent
and normally distributed. Proportions data, however, are
bounded to the interval [0,1], and a method such as beta
regression [32] could be a more appropriate model since
a regression model may include predictions outside of
this interval. However, we are again limited by the num-
ber of observations. We therefore consider the linear re-
gression assumptions using the Durban Watson statistic
to test for independence, residual plot to test for homo-
scedasticity, and the normal probability plot to test for
normality.

Results
From the Indiana Medicaid data, 37,451 women had
both pregnancy and prescription opioid claims from Q1
2014 to Q1 2019. Of these, 2130 women met the criteria
for doctor shopping. For these women, the diagnoses as-
sociated with claims of prescription opioids were pri-
marily for abdominal pain including (in rank order):
unspecified abdominal pain (ICD10 R109), right lower
quadrant pain (ICD10 R1031), right upper quadrant pain
(ICD10 R1011), pelvic and perineal pain (ICD10 R012)
abdominal pain (ICD9 78,909 and 78,900), epigastric

Table 2 ICD9/10 codes for diagnoses associated with claims of prescription opioids for the 2130 Medicaid-enrolled pregnant
women

Diagnosis
Code

ICD
9/
10

Description Number of Pregnant
Women Classified as
Not a Doctor
Shopper
(a)

Number of
Pregnant Women
Classified as Doctor
Shopper
(b)

Percent of Pregnant Women with
Specified Diagnosis Code that
were Classified as Doctor
Shopper
(b)/((a) + (b))

Percent of Doctor
Shopping Pregnant
Women with Diagnosis
Code Out of Total
(b)/2130

R109 ICD
9

Unspecified
abdominal pain

702 341 32.7% 16.0%

R1011 ICD
9

Right upper
quadrant pain

279 149 34.8% 7.0%

R102 ICD
9

Pelvic and perineal
pain

264 147 35.8% 6.9%

R1031 ICD
9

Right lower
quadrant pain

272 131 32.5% 6.2%

78,900 ICD
10

Abdominal pain,
unspecified site

263 108 29.1% 5.1%

R1013 ICD
9

Lower abdominal
pain, unspecified

257 107 29.4% 5.0%

78,909 ICD
10

Abdominal pain,
other specified site

274 106 27.9% 4.9%

R1030 ICD
9

Lower abdominal
pain, unspecified

230 99 30.1% 4.7%

R1032 ICD
9

Left lower
quadrant pain

198 91 31.5% 4.3%
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pain (ICD10 R103), lower left quadrant pain (ICD10
R1032), and lower abdominal pain unspecified (ICD10
R1030). The diagnoses percentages are shown in
Table 2.
Figure 1 shows the change in percent drug shopping

among Medicaid-enrolled pregnant women over the
time horizon. The regression results for the coefficients
are shown in Table 3. The adjusted R2 was 0.475 and
the F statistic for the analysis of variance was significant
(p = 0.003). The predicted value and observed values
with confidence interevals are shown in Table 4.
Both the time period R and interaction term I*R were

significant. The positive value of a2 implies that the per-
centage of pregnant women that engaged in doctor
shopping increased from the time of release of Title 884
to the passage of Public Law 194 by an absolute rate of
0.3% per quarter. The negative value of a3 implies that
the percent of pregnant women engaging in doctor
shopping decreased after passage of Public Law 194 by

an absolute rate of 2.4% per quarter. The value of a0 im-
plies that the overall average of percentage of pregnant
women engaging in doctor shopping over the entire
horizon was 10.6%.
With regards to the linear regression assumptions, none

of the predicted values fell on or below 0. In addition, the
Durban Watson statistic for the regression was 2.23,
which exceeds the critical value of 1.83 [33] and implies
the regression errors do not have positive autocorrelation
(i.e., are independent). The residuals plot (data not shown)
appears to be homoscedastic, and the normal probability
plot (data not shown) is close to linear.
For pregnant women that doctor shopped, the per-

centage of times that they had a single overlapping opi-
oid prescription claim (i.e., one incident) was 75.3%
prior to passage of Public Law 194 and 87.7% after pas-
sage. However, whenever the number of incidents was
greater than one (from two to 31 overlapping claims),
the percentage was lower post-passage compared to pre-
passage. The only exception was for five incidents
(0.75% post-passage compared to 0.85% pre-passage).
Figure 2 shows the comparison.

Discussion
Although MEDs for all opioids per day decreased
after introduction of the Opioid Prescribing Require-
ments from the Medical Licensing Board [34], our
results show that the practice of doctor shopping
among Medicaid-enrolled pregnant women signifi-
cantly increased. The implication is that when supply
became limited, individuals with an opioid use dis-
order sought alternatives [35, 36]. Doctor shopping

Fig. 1 Percent of pregnant women with an opioid prescription that doctor shop over the planning horizon. Q1 2018 was the quarter where
Public Law 194 [28] was passed and Q2 2018 the quarter that it was enacted

Table 3 Results of regression model (n = 21) for percentage of
pregnant women doctor shopping over time, where I is an
indicator value that equals 1 if observation is on or after when
Public Law 194 [28] was passed and 0 otherwise, R is the time
period minus the time when Public Law 194 was passed, and
I*R is the interaction of these two independent variables

Variable Coefficient Value Standard Error p-value

Intercept 0.106 0.012 < 0.000

I −0.015 0.021 0.493

R 0.003 0.001 0.014

I*R −0.024 0.007 0.004
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among this group increased until the passage of
Public Law 194, when a significant decrease oc-
curred. Although Public Law 194 did not take effect
until the first quarter of 2019, it appears that many
prescribers adjusted their practices once the law was
passed. This may explain the steep drop in doctor
shopping seen in the first quarter of 2018 as pre-
scribers prepared their systems and altered their
practices to be ready when the law took effect.
There is another significant drop in Q1 of 2019,
which coincides with the formal enactment of the
new law. However, because it is a single data point
it is difficult to make definitive conclusions about
the effect of the law and it is unknown if this drop
was sustained over time.
The decreases seen in doctor shopping behavior are a

direct reflection of the prescribing practices among
Indiana providers. This points to the importance of
legislation that addressed single prescriptions and not just
long-term opioid prescribing. It is also possible that the
potential punitive component in the Law for non-
compliance played a role. In addition, the more complex
and prescriptive nature of Public Law 194 required many
steps by physicians for compliance. This may have led to
effective practice changes when compared to the singular

act of checking the PMDP as defined in the Opioid Pre-
scribing Requirements from the Medical Licensing Board
and being given the autonomy to use that information
how the physician saw fit. Note that from Fig. 2, all fre-
quencies higher than one incident of doctor shopping for
the population had lower percentages after passage of
Public Law 194 compared to prior and supports the case
that was is being observed is actually due to the legislation
and not just due to some organizational change.
Pain often occurs as a symptom of other medical con-

ditions and diagnoses. It is interesting to note that a sig-
nificant number of diagnoses for opioid prescriptions
provided to Medicaid-enrolled pregnant women catego-
rized as doctor shoppers in Indiana were for the primary
diagnosis of pain. This includes a significant number for
unspecified abdominal pain (Table 2), which is also con-
sistent with national data [5].
There are several limitations to our study. First, there

a several alternative definitions of doctor shopping that
have been used in the literature that significantly differ
from ours including defining an individual who used six
or more prescribers in a calendar year [11]. It is also
possible that patients identified as “doctor shoppers” in
our study instead had multiple prescribers due to poor
primary care access or required visits to multiple

Table 4 Observations, confidence intervals, and regression predicted values for the 21 quarters

Quarter Proportion of Pregnant Woment that Met Conditions of Doctor
Shopping

95% Confidence
Interval

Predicted Value from
Regression

1 0.035 (0.019, 0.050) 0.049

2 0.059 (0.043, 0.756) 0.053

3 0.083 (0.061, 0.104) 0.057

4 0.071 (0.054, 0.088) 0.061

5 0.061 (0.046, 0.075) 0.065

6 0.038 (0.029, 0.048) 0.069

7 0.064 (0.049, 0.078) 0.073

8 0.094 (0.076, 0.112) 0.077

9 0.086 (0.070, 0.102) 0.081

10 0.109 (0.091, 0.127) 0.085

11 0.082 (0.068, 0.096) 0.089

12 0.066 (0.053, 0.079) 0.093

13 0.073 (0.056, 0.089) 0.097

14 0.096 (0.079, 0.112) 0.101

15 0.139 (0.118, 0.161) 0.105

16 0.082 (0.070, 0.093) 0.096

17 0.119 (0.103, 0.135) 0.079

18 0.032 (0.026, 0.038) 0.064

19 0.046 (0.039, 0.054) 0.048

20 0.043 (0.038, 0.049) 0.031

21 0.012 (0.009, 0.014) 0.015

Joshi et al. Substance Abuse Treatment, Prevention, and Policy           (2021) 16:30 Page 5 of 7



specialists [37]. In addition, the use of Medicaid claims
limited our analysis to prescribed opiates and does not
consider the entire population of Indiana. Finally, the
unintended consequences of policies that reduce pre-
scribing are a concern. We did not consider a possible
concurrent shift to illicitly obtained opiates for this
group after they were no longer receiving prescription
opioids from multiple prescribers. However, although
qualitative studies have found that people move to using
illicit opioids when they are no longer able to acquire
prescription opioids, the occourance in pregnant women
has not been quantified. Futher, NIDA reports data from
2011 showing only 4–6% of prescription opioid users
moving to heroin [38].

Conclusion
This study showed that opioid doctor shopping among
Medicaid-enrolled pregnant women in Indiana was on
the rise a decade after the implementation of the PDMP
program (INSPECT) in 2004 and continued following
the introduction of the Opioid Prescribing Requirements
from the Medical Licensing Board in 2013. However,
doctor shopping among this group decreased after pas-
sage of Public Law 194, which required INSPECT review
prior to the prescribing of any opioids for any duration

for all medical practitioners and additionally included
potential medical negligence penalties for non-
compliance. This shows the importance that legislation
addresses single prescriptions and not just long-term
opioid prescribing.
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